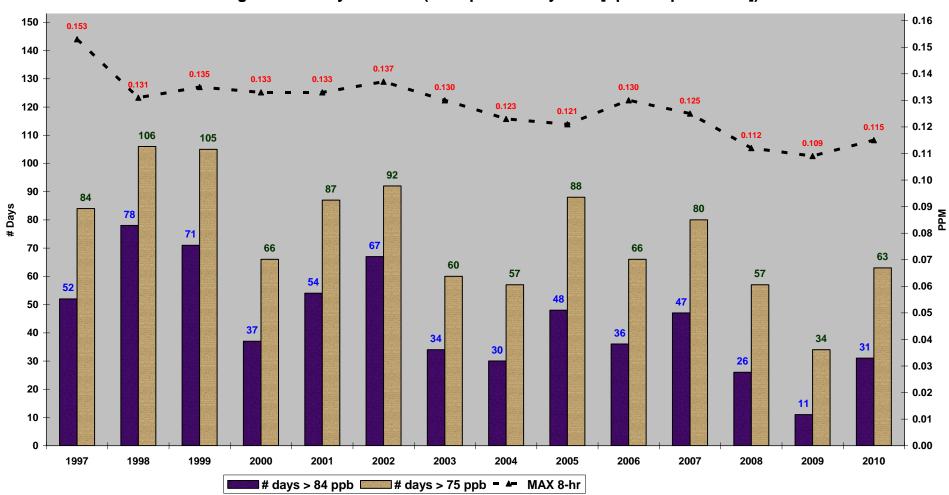
Emissions and Modeling Update

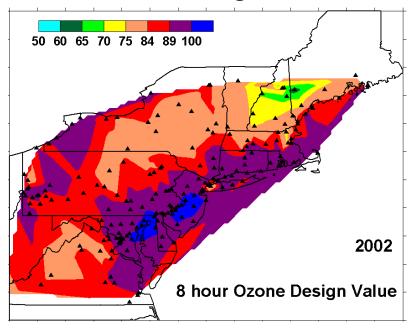
OTC Fall Meeting

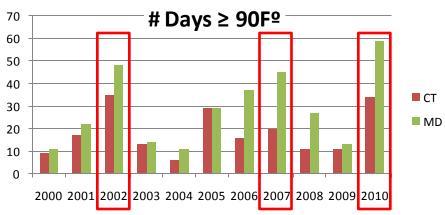
November 10th, 2010 Sheraton Hotel Boston, MA

Overview

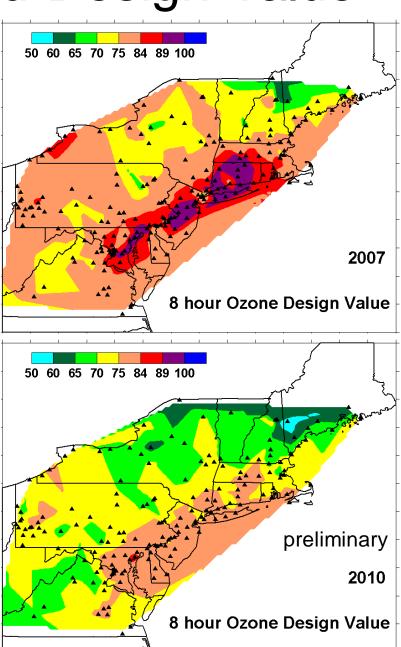

- 1. Ozone NAAQS
- 2. Modeling
- 3. Emissions Inventory

Ozone NAAQS

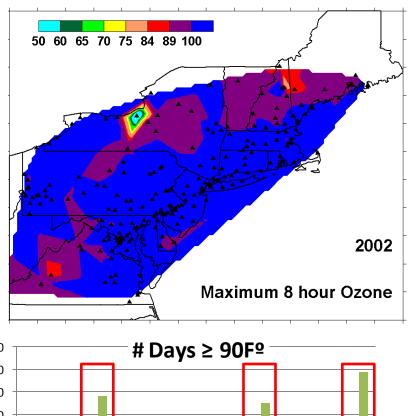

- 2008 NAAQS = 75ppb
 - Has not been revoked, nor implemented
 - Form = 3 year average of 4th maximum
 - Secondary NAAQS equal to Primary
- 2010 NAAQS = 60 70 ppb (TBD)
 - Now set for announcement by 12/31/2010
 - Form = 3 year average of 4th maximum
 - Secondary NAAQS 7-15ppm-hours (Also TBD)

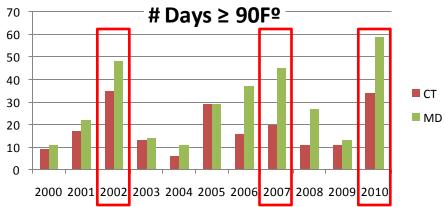

OTR Ozone Trends (1997-2010)

OTR High Ozone Day TRENDS (2010 preliminary data [up to September 6])

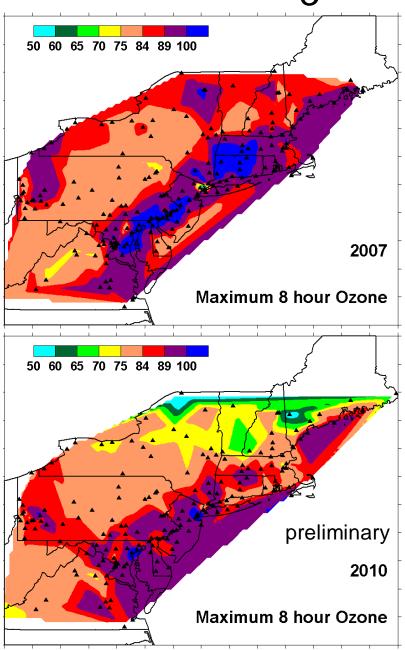


8-hour O₃ Monitored Design Value





2002 – SIP base year for 1997 8-hour O_3 Standard 2007 – SIP base year for next round of O_3 Standard 2010 – the latest Ozone season $\frac{11}{10}/2010$



Maximum Monitored 8-hour O₃

2002 - SIP base year for 1997 8-hour O_3 Standard 2007 - SIP base year for next round of O_3 Standard 2010 - the latest Ozone season

Ozone Standard Timelines

• 75 ppb Standard Final	03/2008
Proposed New Standard	01/2010
Final New Standard	~12/31/2010
Proposed Implementation Rule	~12/31/2010
State Recommendations	05/2011 – 12/2011
Final New Designation	12/2011 – 12/2012
• 75 ppb Standard Date SIPs Due	03/2013
New Date SIPs Due	04/2014 – 12/2015

Potential Attainment Timeline for New Std.

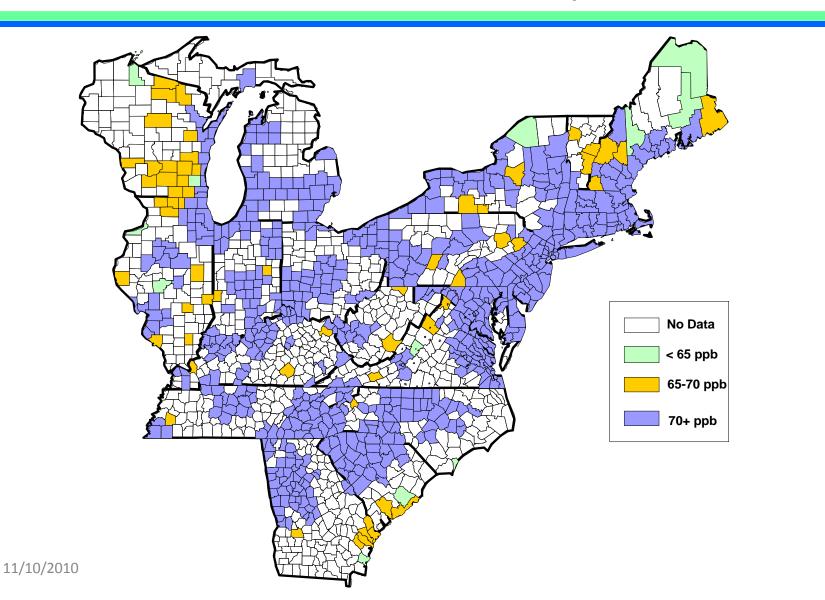
Status	Clean data years	Show attainment by	
Marginal	2012-2014	12/2014	
Moderate	2015-2017	12/2017	
Serious	2018-2020	12/2020	
Severe	2024-2026	12/2026	

Regulation Schedule

- 6 Years needed from start to full compliance date
- 4 Years to adopt and implement

2 Years

Regulation Development


2 Years

Regulation Adoption

2 Years

Regulation Implementation/Compliance

Potential Nonattainment by CSA (2007-09 DV)

10

Modeling Overview

- 1. Ozone NAAQS
- 2. Screening Runs/Proxy Inventory
- 3. Emissions Inventory

Screening Runs

- Purpose: Investigate the level of emissions reductions needed to achieve
 - Current NAAQS of 75 ppb
 - Potentially lower new NAAQS of 60 70 ppb

 Design: Screening simulations in a 12km eastern U.S. domain that use existing data.

Caveats

- These screening runs use proxy emissions through interpolated inventories for many sectors and regions
- Simplified "MOVES-like" adjustment to MOBILE6 emissions have not been fully tested
- Screening simulations are based on simplified across-the-board emission reduction approaches

Across-The-Board Runs

 Two simulations with domain-wide reductions on all man-made sectors:

N50/V30

- 50% NO_X reductions
- 30% VOC reductions

N70/V30

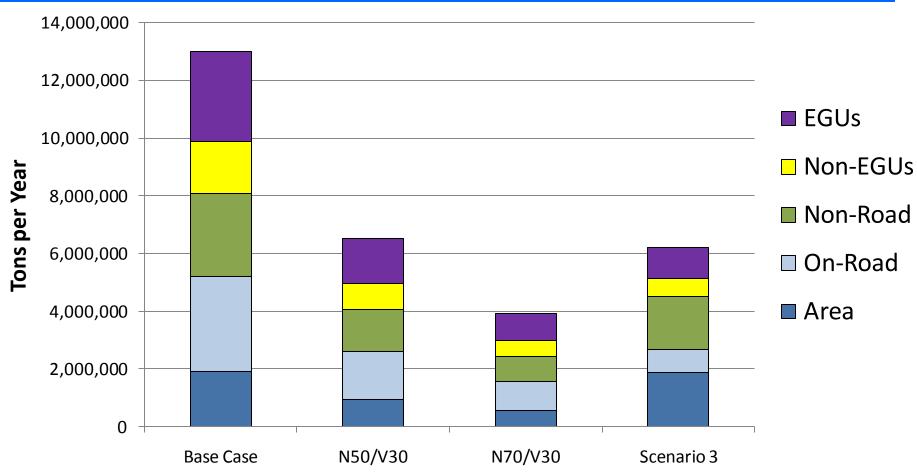
- 70% NO_x reductions
- 30% VOC reductions

"Scenario 3" Run

 Approximates OTC's recommendation for critical national & OTR measures

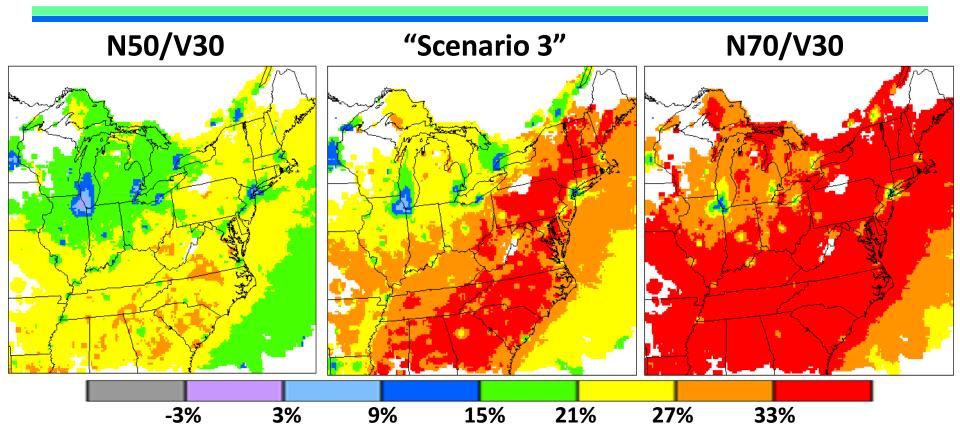
NO_X Domainwide

- Point: 65% reduction
 - Reductions from ICI boilers/cement kilns
 - 900,000 ton regional trading cap on EGUs
- On-road: 75% reduction
 - Approximates a 2020 national LEV 3
- Non-road: 35% reduction
 - Reductions from marine/locomotive engines


NO_X in OTR States

Additional 5% reduction across all sectors in the OTR

VOC


• 30% reduction for man-made sectors across entire domain

Domain Wide NO_X Emissions by Run

- "Scenario 3" approximates an overall 55% NO_x reduction
- Includes MOVES adjustments to MOBILE6 emissions

Relative Ozone Reductions

- Ozone reductions from "Scenario 3" run fall between those from the across-the-board reduction simulations
- NO_X focused emission reductions show less benefit for urban core areas

Monitors at Nonattainment Levels

	Base Case	N50/V30	"Scenario 3"	N70/V30
84 ppb	34	0	0	0
75 ppb	125	2	1	0
70 ppb	167	16	1	1
65 ppb	186	55	12	4
60 ppb	191	101	29	15
Monitors in OTR	194	190	190	190

- In N50/V30 hot spots remain in urban areas
- Hot spots are further reduced in "Scenario 3" and N70/V30
- Hot spots remain near New York and Philadelphia

Screening Run Design Values by Monitor

Monitor		2005 – 09	N50/V30	"Scenario 3"	N70/V30
Bayonne	NJ	85	81	78	74
White Plains	NY	86	75	70	66
Camden	NJ	88	75	68	65
Bristol	PA	90	76	67	64
Greenwich	CT	86	73	67	61
Holtsville	NY	88	73	66	61
NEA	PA	88	74	65	62
Clarksboro	NJ	86	72	64	61
Rutgers U	NJ	86	72	63	60
McMillan Reservoir	DC	85	71	63	60
Edgewood	MD	91	68	59	55

Conclusions from Screening Runs

 "Scenario 3" shows a pathway to attainment, through national reduction programs and local actions

All simulations show lower ozone levels region wide

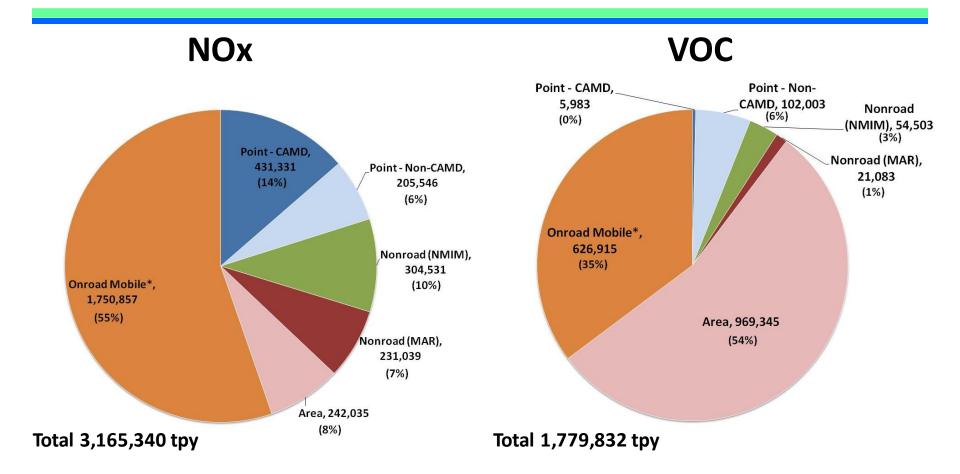
 All simulations show less relative benefit for urban core areas

Emissions Inventory Overview

- 1. Ozone NAAQS
- 2. Modeling
- 3. Emissions Inventory
 - Current SIP Inventory Progress
 - MOVES
 - ERTAC

Modeling Inventory

2007 Baseline


All sectors complete except Onroad Mobile

2013 PM_{2.5} & 2017/20 for O₃

- MANE-VU
 - Nonroad: Final in November
 - Non-EGU Point & Area Sources: Stakeholder review in November
 - EGU Point: Probably mid-2011
 - Onroad Mobile: TBD
- Other RPOs: TBD

2007 Annual Emissions by Sector (OTR+VA)

 Onroad Mobile Estimates are interpolated 2007 emissions using MOBILE6.2 and MOVES Adjustment Factors

MOVES

 Purpose: to complete the onroad mobile emissions inventory using EPA's Mobile Vehicle Emission Simulator

Issues:

- EPA continues to revise required tools
- MOVES requires enormous computing power
- Scenario analysis difficult due to long runtimes
- Revision needed to evaluate the effect of LEV3 & heavy-duty CAFE
- Reporting tools inadequate for SIP submittals

ERTAC

- Eastern Regional Technical Advisory Committee
 - NE, Mid-Atlantic, SE, and Lake Michigan area
 - States, Industry, & Regional Organizations
- Purpose: Develop a methodology to create future year EGU emissions inventories that involve EPA and
 - Are transparent, inexpensive, regionally stable, and flexible unlike the proprietary IPM®
 - IPM® requires hiring a contractor for each different run adding significant cost

Next Steps for ERTAC

November-January, 2010

- Contractors write the programs
- Initiate database Q/A by states to ensure unit inclusion
- State ID of new/retired units

February/March, 2011

Alpha version available for review

Next Steps

Complete Base Year Inventory

SIP Model Performance Evaluation for 2007

SIP Modeling Protocol Development

Additional Screening Runs

Identification of OTB/OTW/BOTW Controls

Questions

- Committee Chair:
 - Jeff Underhill (NH) jeffrey.underhill@des.nh.gov (603) 271-1102
- Screening & SIP Modeling:
 - Christian Hogrefe (NY)cxhogref@gw.dec.state.ny.us (518) 402-8402
 - Mike Ku (NY) <u>mku@dec.state.ny.us</u>
- Emissions Inventory:
 - Susan Wierman (MARAMA)swierman@marama.org (443) 901-1882